
Engduino Tutorial

Engduino Support Team - support@engduino.org University College London

1 Introduction

The Engduino is, at heart, an Arduino, and it is programmed using the Arduino IDE (The software you
will using to program your board). We write the app for our Arduino is going to execute on our computer
and then, using a USB cable and special communication software,upload it to our Arduino. An Arduino
is a very simple, small computer that has a number of pins that you can connect to external circuitry.
Typically, you use some of those pins as inputs to get information in to the Arduino, and some as outputs
to cause some external device (motor, lights, etc) to do something. In between, you have some software
that reads the inputs, and based on their value, decides how to drive the outputs.

1.1 Overview of the Engduino Board

Your Engduino board comes pre-fitted with some sensors and LEDs on it already so we can get straight
into experimenting with programming the board without having to do any construction beforehand.

1

Figure 1: The top and bottom of your Arduino

2

On the one side of your Engduino you have 16 LED lights that have adjustable brightness and can be set
to three colors: Red, Green and Blue.

Figure 2: 16 Red, Green, Blue LEDs on one side of the board

The LEDS are numbered 1 − 16 and their exact positions can be referenced at Appendix A. Also on
this side of the board we have a thermistor which can be used to detect temperature. On the other side
we have the battery terminals where we can install a battery. The battery charges automatically if it
is plugged in while the Engduino is plugged into a USB port. There is also a button that can be used
to get input from the user, a power switch to power your device down when you are not using it. The
accelerometer is near the keyring hole.

2 Your first app

For your first exercise you are going to load a pre-written program up in your Arduino IDE and then
upload it to your Engduino board.

2.1

. Your Arduino IDE should be open for you already. If not, just double click on the blue Arduino icon
on your desktop You should see a window like the one shown

3

2.2

Now we’re going to laod the program into the IDE. Go to the File menu, near the top of the IDE window,
and select File → Examples → 01. Engduino → MyFirstEngduinoDemo

4

A new window will pop up with the pre-written app in it. We don’t need to modify this code for now so
we’re going to go ahead and upload it to the Engduino.

2.3 Uploading

On the top toolbar, click the arrow button to ”verify” the app code is correct before uploading.

5

Some text will scroll in the black console window near the bottom and the last message should say
that the compilation was successful. now click the Up Arrow button which will upload your app to the
Engduino board.

6

Some more text will appear in the console window and if you observe your Engduino board you should
see a small LED near the USB port flashing as your app is being uploaded to the board. Once it’s
complete, you should see a message in the black console window saying the upload is complete. Con-
gratulations, you’ve just programmed yor first Engduino. Obviously you can tell, our app doesn’t do
anything yet. Let’s make it interesting.

3 Customising Your first App

Let’s take a quick look at some interesting parts of the basic app code and see how we can customise,
personalise or enhance it.

31
32 void setup()
33 {
34 EngduinoLEDs.begin();
35 }

This is a function. A function is similar to the ones you may have experienced in mathematics. It can
take some value/s and returns another value after it executes. void is what the function returns (nothing
in this case), then comes the function name (setup in this case) and then brackeets that contain the

7

values we pass to the function (None in this case so the brackets are empty.) The curly brackets delimite
our code, so in a file with many functions everything within the set of curly brackets just after our
function name belongs to that function. Our funciton setup() has just one line

31 EngduinoLEDs.begin();

This line tells the object EngduinoLEDs to run the funciton begin() which gets them started so we can
play with them. The semi-colon at the end of the line is common to many programming languages and
signals to the computer that is the end of one instruction. Don’t forget these when you start writing your
own code. The next function

31
32 void loop()
33 {
34
35 }

is called loop() and as you might have guessed returns nothing (void) and takes no values (hence the
empty brackets). The loop function is where we give instructions to the Engduino to perform. As you
can see there is no code between the curly brackets and this is why our app does nothing so far. Let’s fix
that!
To begin with let’s try something simple. We’ll tell the Engduino to switch on all the LEDs. Inside the
Arduino IDE editor window, delete the lines 14− 16

14 /**
15 * Your app instructions go here.
16 */

and insert the instruciton

31 EngduinoLEDs.setAll(GREEN);

So now your program should look like this

1 #include <EngduinoLEDs.h>
2
3
4
5 void setup()
6 {
7 EngduinoLEDs.begin();
8 }
9

10
11
12 void loop()
13 {
14 EngduinoLEDs.setAll(GREEN);
15 }

8

If it does, go ahead and verify the app by clicking on the tick button on the IDE

once the compilation messages finish showing in the black console window, the app is ready for upload-
ing. Go ahead and click on the upload Arrow button to upload your app.

9

Some messages will appear at in the console, and when it’s done you should see the lights on your
Engduino board light up and turn green! The line

31 EngduinoLEDs.setAll(GREEN);

is where all the magic happens. This line tells the object EngduinoLEDs (all the LEDs) to execute the
function setAll(). We pass this funciton a value, namely what color to make the LEDs (Green in this
case). It doesn’t return a value but simply does what you tell it, and switches the LEDs on.

3.1 Personalise

The function setAll() can take a number of different types of argument including three pre-defined
colours; Red, Green, and Blue. Go agead and delete the word GREEN inside the brackets and replace it
with the color of your choice all in Capital letters. For example if you prefer red, your app will look like
this.

1 #include <EngduinoLEDs.h>
2
3
4

10

5 void setup()
6 {
7 EngduinoLEDs.begin();
8 }
9

10
11
12 void loop()
13 {
14 EngduinoLEDs.setAll(RED);
15 }

When you’ve done that. Verify your code with the tick button like before and then wait for the verifica-
tion to complete and then click Upload to upload your code. The LEDs will no be lit according to the
colour you choose. Well done!

3.2 Delay

The Engduino has a function built in called delay(). This function takes a number which tells the board
to wait those number of milliseconds (remember a millisecond is one thousandth of a second) before
executing the next function. We are going to use this useful little funciton to make our Engduino blink.

3.3 Blink

Just below the line

1 EngduinoLEDs.setAll(RED);

add the lines

31 delay(2000);
32 EngduinoLEDs.setAll(OFF);
33 delay(1000);

Don’t forget your semi-colons! Your code should now look something like this. (With the color you
chose instead of RED if you chose something else.)

31 #include <EngduinoLEDs.h>
32
33
34
35 void setup()
36 {
37 EngduinoLEDs.begin();
38 }
39
40
41
42 void loop()

11

43 {
44 EngduinoLEDs.setAll(RED);
45 delay(2000);
46 EngduinoLEDs.setAll(OFF);
47 delay(1000);
48 }

Go ahead and verify your code with the tick buton and then one that’s done upload it. You should see
your Engduino now rythmically blinking the LEDs in the color that you chose. Go ahead and experiment
with the timings now. Change the numbers inside the brackets of the delay functions in both the lines

31 delay(2000);
32
33 delay(1000);

to some number between 800 − 5000 or 0.8 seconds to 5seconds. So your personalised app code may
look something like this

31 delay(3050);
32 EngduinoLEDs.setAll(OFF);
33 delay(900);

By playing around with combinations of numbers you can modify the sequence the blinking takes. See
how different blink sequencing and coloring can have a meaning. For example, a fast blinking red board
could signify danger. A constant green could mean ”All clear”.
As you may have noticed, the app function loop() executes line by line from top to bottom. The Engduino
sets the LEDs to a color. Then it waits for a specified amount of time. Then it turns them all off and then
waits again.
If you’re very smart you may have guessed that the loop() function does just what it says. When it gets
to the last line inside the curly brackets it loops back around again and starts from the first line inside the
curly brackets

12

If we were to add the lines

31 EngduinoLEDs.setAll(GREEN);
32 delay(2000);
33 EngduinoLEDs.setAll(OFF);
34 delay(1000);

to the bottom so our code would look like this

31 EngduinoLEDs.setAll(RED);
32 delay(2000);
33 EngduinoLEDs.setAll(OFF);
34 delay(1000);
35 EngduinoLEDs.setAll(YELLOW);
36 delay(2000);

13

37 EngduinoLEDs.setAll(OFF);
38 delay(1000);

What do you think would happen? Well done if you guessed it would blink one color then blink another!

4 Traffic Lights

Bravo if you’ve got here. You now know enough to make your own traffic light!
If you think about it a traffic light does almost the same thing as our app except it changes three colors
and the timings are slightly different. We can make a couple more modifications and ours will do the
same. Let’s add the lines

31 EngduinoLEDs.setAll(GREEN);
32 delay(2000);
33 EngduinoLEDs.setAll(OFF);
34 delay(1000);
35 EngduinoLEDs.setAll(YELLOW);
36 delay(2000);
37 EngduinoLEDs.setAll(OFF);
38 delay(1000);

after the last line but still inside the curly brackets. Then change the sequence so that the Lights go from
RED to YELLOW to GREEN and then finally back to YELLOW. Your code should look like this

1 #include <EngduinoLEDs.h>
2
3
4
5 void setup()
6 {
7 EngduinoLEDs.begin();
8 }
9

10
11
12 void loop()
13 {
14 EngduinoLEDs.setAll(RED);
15 delay(2000);
16 EngduinoLEDs.setAll(OFF);
17 delay(1000);
18 EngduinoLEDs.setAll(YELLOW);
19 delay(2000);
20 EngduinoLEDs.setAll(OFF);
21 delay(1000);
22 EngduinoLEDs.setAll(GREEN);
23 delay(2000);
24 EngduinoLEDs.setAll(OFF);
25 delay(1000);

14

26 EngduinoLEDs.setAll(YELLOW);
27 delay(2000);
28 EngduinoLEDs.setAll(OFF);
29 delay(1000);
30
31
32 }

Once you’re sure your code looks like this. You can go ahead and verify it with the tick button and then
upload it with the up arrow on the Arduino IDE.
You’ll see your Engduino wiil begin to look a traffic light but the timing seems all wrong. Experiment
with different timings to see if you can get it to look like a traffic light.
sectionadvanced If you still have time, lets cahnge the lighting so it more accurately reflects UK light
signals. If you remember, UK traffic signals have the following pattern

So when our traffic light changes from Red to the nest phase we want our Engduino to show half Red
lights and half Yellow. This is quite easy. We just have to write a little more code because we will
have to set individual LEDs to colors rather than all of them with a single line. The function Eng-
duinoLEDs.setLED() takes two values (separated by a comma). The first is the number of the LED you
want to access and the other is the color you want that LED to be. So for example, if I wanted to switch
LED number 1 to yellow the code would look like this.

31 EngduinoLEDs.setLED(1,YELLOW);

Remember the Engduino has 16 LEDs so perhaps if we set 1− 8 to Red and 9− 16 to Yellow, we might
make it look how we want it to. At line 48 delete the line

15

31 EngduinoLEDs.setAll(YELLOW);

and replace it with the following lines. (Don’t forget the copy and paste functionality in the Arduino
Edit menu item to help save you some time)

31 EngduinoLEDs.setLED(1,RED);
32 EngduinoLEDs.setLED(2,RED);
33 EngduinoLEDs.setLED(3,RED);
34 EngduinoLEDs.setLED(4,RED);
35 EngduinoLEDs.setLED(5,RED);
36 EngduinoLEDs.setLED(6,RED);
37 EngduinoLEDs.setLED(7,RED);
38 EngduinoLEDs.setLED(8,RED);
39 EngduinoLEDs.setLED(9,YELLOW);
40 EngduinoLEDs.setLED(10,YELLOW);
41 EngduinoLEDs.setLED(11,YELLOW);
42 EngduinoLEDs.setLED(12,YELLOW);
43 EngduinoLEDs.setLED(13,YELLOW);
44 EngduinoLEDs.setLED(14,YELLOW);
45 EngduinoLEDs.setLED(15,YELLOW);
46 EngduinoLEDs.setLED(16,YELLOW);

So your final code should look something liek this. (With your own tweaked timings in the delay()
functions).

31 #include <EngduinoLEDs.h>
32
33
34
35 void setup()
36 {
37 EngduinoLEDs.begin();
38 }
39
40
41
42 void loop()
43 {
44 EngduinoLEDs.setAll(RED);
45 delay(2000);
46 EngduinoLEDs.setAll(OFF);
47 delay(1000);
48
49 EngduinoLEDs.setLED(1,RED);
50 EngduinoLEDs.setLED(2,RED);
51 EngduinoLEDs.setLED(3,RED);
52 EngduinoLEDs.setLED(4,RED);
53 EngduinoLEDs.setLED(5,RED);
54 EngduinoLEDs.setLED(6,RED);

16

55 EngduinoLEDs.setLED(7,RED);
56 EngduinoLEDs.setLED(8,RED);
57 EngduinoLEDs.setLED(9,YELLOW);
58 EngduinoLEDs.setLED(10,YELLOW);
59 EngduinoLEDs.setLED(11,YELLOW);
60 EngduinoLEDs.setLED(12,YELLOW);
61 EngduinoLEDs.setLED(13,YELLOW);
62 EngduinoLEDs.setLED(14,YELLOW);
63 EngduinoLEDs.setLED(15,YELLOW);
64 EngduinoLEDs.setLED(16,YELLOW);
65 delay(2000);
66
67
68 EngduinoLEDs.setAll(OFF);
69 delay(1000);
70 EngduinoLEDs.setAll(GREEN);
71 delay(2000);
72 EngduinoLEDs.setAll(OFF);
73 delay(1000);
74 EngduinoLEDs.setAll(YELLOW);
75 delay(2000);
76 EngduinoLEDs.setAll(OFF);
77 delay(1000);
78
79
80 }

Now it’s starting to look ohw we want it to. You can now change the colors of the individual LEDs
to red or yellow so that you get the sape that you want. For example so that when the Traffic light is
Red/Yellow it looks something like this.

17

18

	Introduction
	Overview of the Engduino Board

	Your first app
	
	
	Uploading

	Customising Your first App
	Personalise
	Delay
	Blink

	Traffic Lights

