
   Page 1 of 8 
© UCL (University College London). All  Rights Reserved 

 
engduino®  Tutorial 

ENGDUINO SUPPORT TEAM - SUPPORT@ENGDUINO.ORG 
 

Using Engduino as a measurement tool to 
measure distance. 

Overview: 
In this tutorial, we are going to demonstrate how you can apply the physics you learnt in the class to 

solve engineering problems and develop interesting application using Engduino. This example will 

use the accelerometer on Engduino to measure acceleration, then apply double integration to get 
the distance.  

Aim: 
This tutorial aims to provide you the step-by-step guide on how to create the application that 

measure distance using the accelerometer readings from Engduino. 

Objectives: 
 Get accelerometer reading, apply filter to reduce noise and calculate the acceleration 

 Integrate the acceleration into velocity, then to distance 

Learning Outcomes: 
By the end of this tutorial, you should be able to 

 Get xyz accelerometer reading from Engduino 

 Learn how to use high pass and low pass filter to filter out noise from sensor 

 Apply integration in MATLAB®  

Pre-requisite 
 Engduino MATLAB Support toolbox and MATLAB installed 

 Engduino configured to make it discoverable in MATLAB 

Tutorial 
In physics, you have learnt that integrate acceleration over time will produce velocity, and integrate 

velocity over time again gives you the displacement. Here, we are going to use the 3-axis 

accelerometer on the Engduino to get the acceleration and apply this rule to calculate the 
displacement. 

1. How does an accelerometer works? 

First, we need to understand how an accelerometer measures the acceleration. Let’s visualise the 
accelerometer as a box that contains a ball in it. 

 

mailto:support@engduino.org


   Page 2 of 8 
© UCL (University College London). All  Rights Reserved 

 

If there is no gravitational force or any other fields that might affect 

the position of the ball, the ball will simply float in the middle of the 

box. In this case, without touching any sides of the box, the 
accelerometer will measures 0g on all three axis. 

 

 

     

If we take this model and put it on earth, the gravitational force will act on the ball  and cause it to 

touch the sides of the box. Imagine that the sides of the box are pressure sensitive, the 

accelerometer will detects this pressure force and gives the reading as shown in the above model. 

We can compare the readings to get the orientation. 

 

In the model above, we move the accelerometer to the right, the ball will move in the opposite 

direction of the acceleration due to inertial fictitious force. The accelerometer will gives the reading 

of this force which is directed at the opposite direction of the acceleration. However, there are many 

other forces on the earth that can affect the force acting on the ball, such as the electromagnetic 

force if the ball is made up of steel. We call these other forces as noise which could interfere our 
readings.   

2. Work out the xyz axis of the accelerometer 

Now, try out the accelerometer and work out the xyz-axis by rotating the Engduino. Plug in the 

Engduino to the computer, launch MATLAB and create a new script. Use the code below to connect 
to Engduino. 



   Page 3 of 8 
© UCL (University College London). All  Rights Reserved 

   

This code will make the connection to Engduino. Ensure that MATLAB is able to connect to Engduino 
by checking at the message in the command window before you continue. 

Once you have connected the Engduino, stop the script and add the following code below the 

existing code.    

 

This code will read the accelerometer and returns the xyz axis readings respectively.  

Work out the axis, you will get approximately either -1g or 1g on the z-axis if you lay 

the Engduino flat on a table. You will notice that the readings fluctuate and can be 

quite noisy. In order to remove some noise, we would have to apply some filtering 

to the readings. This will be discussed in the next section. 

 

3. The steps to generate a program that measure distance  

Let us look at the steps needed to create our program that measures distance using the 
accelerometer before we dive into the actual code.  

In the program, we will get the accelerometer reading at approximately an interval of 0.01s. This 

interval will be our change in time dt. We will convert the accelerometer reading to acceleration (1g 

= 9.81m/s^2). Integrate the acceleration over dt to get the change in velocity v(t). Then add this 

change in velocity to the initial velocity, which is the velocity at the previous time step and integrate 

it again over dt to get the displacement. We total up the displacement at each time step to get the 

total displacement. These steps will be put in a loop, “a loop is where the program keep repeating 
doing the task”, until we want to stop our measurement.  

In Psuedo code, 

Initialise the variables 

Initialise the accelerometer 

While not end of measurement 

 Get accelerometer reading 

 Convert accelerometer reading to acceleration 

 Record the current time  

 dt = current time – previous time 

 v(t) = Integrate acceleration over dt 

 current velocity = previous velocity + v(t) 

 displacement = Integrate current velocity over dt 

if (~exist('e', 'var')) 
    e = engduino(); 
end 

 

 

 

while(1) 
    newReading = e.getAccelerometer() 

    pause(0.5); 
end 

 

 

 



   Page 4 of 8 
© UCL (University College London). All  Rights Reserved 

 total up the displacement  

4. Code the program 

Let us start coding the actual program. Create a new script on MALTAB. The first thing we do is 

initialise the variables needed. Variables are seen as a temporary memory space in the computer to 
store values that we will be using in our program.  

We will set the frequency of our program as 100Hz, this will def ine how fast the program run at its 

time interval. T = 1/frequency. 

 

 

Set a constant multiplier to convert the accelerometer readings to acceleration in 𝑚𝑠−2. You may 
adjust this value to give a better result. 1g = 9.81m/s^2. 

 

 

The following is a set of variables, which are used to store temporary values for filtering the noise 

from the sensor. Apart from filtering the noise from the sensors, we also apply the filter to our 

calculation after each integration. The reason is simply because even a small value of noise, when it 
gets integrated each time, the noise will become greater too. 

 

 

 

 

 

 

 

Next, initialise the variables needed for the calculation. 

 

 

 

 

The following lines check if the object ‘e’ is available in MATLAB workspace. If it does not exist, it 
calls the function “engduino()” which will connect the Engduino hardware and store it as an object. 

 

 

% Set reading frequency [Hz] - readings per second. 
frequency = 100; 

 

 

% Set multiplier to convert accelerometer data to acceleration m/s^2 
multiplier = 9.81; 

 

 

% Set threshold to ignore small noise in acceleration  
acc_threshold = 0.2; 

  
% initialise filtered value to 0 
xAcc_Filtered = 0; 
acceleration_Filtered=0; 
velocity_Filtered =0; 

  
% coefficient to apply filtering, adjust these to give better result 
alpha = 0.15; 
beta = 0.95; 
gamma = 0.9; 

 

% Initialise variables for calculation 
current_time = now; 

t0 = now; 
previous_time =0; 
previous_velocity =0; 

current_velocity = 0; 
total_displacement = 0; 

 

if (~exist('e', 'var')) 
    e = engduino(); 
end 

 

 



   Page 5 of 8 
© UCL (University College London). All  Rights Reserved 

We do not want to start the measurement right away when we run the program. Use the Engduino’s 
push button as start/stop button.  

 

 

 

We create a while-loop that wait for the push button to be pressed. A while loop will keep repeating 

the code in the body which in this case, it delays the program for 0.1s and does nothing. The reason 

for the delay is to ensure that the program do not register more than one time when the button was 

pressed. We will use only the x-axis of the accelerometer to detect the acceleration in the x-

direction.  

Use the code below to measure the initial value of the accelerometer to act as an offset for the 
readings 

 

 

 

 

 
 

We have initialised the variables needed. Time to write our main program. Create a while-loop to 

keep the program running until a button is pressed.  

 

Get the accelerometer reading, apply the high pass filter to the accelerometer input to get a more 

accurate acceleration reading, then convert it into acceleration in 𝑚𝑠−2. Record the current time. 

 

 

 

 

 

After we have calculated the acceleration, we apply a low pass filter to remove noise . The if 

statement set a small cut-off threshold to ignore small noises. 

 

 

 

Apply the integration to the acceleration to get the velocity, apply the filter to improve the result, 

then integrate the velocity into displacement. The “int(x, previous_time, current_time)” 

% Wait to start calculation 
while(not(e.getButton())) 
    pause(0.1); 
end 

 

 

%% Initialise accelerometer reading 
for i=1:5 
    newReading = e.getAccelerometer(); 
    gx = newReading(1); 
    % apply high pass filter to the accelerometer output 
    xAcc_Filtered = gx - ((1-alpha)*xAcc_Filtered + alpha*gx); 
end 

  
% accelerometer data is multiplied to get 1g=10m/s^2 
init_accx = (floor(xAcc_Filtered*100)*multiplier/100); 

 

while (not(e.getButton())) 

 

 

% Record the current time 

current_time = (now - t0)*10e4; 
newReading = e.getAccelerometer(); 
gx = newReading(1); 
% apply high pass filter to the accelerometer output 
xAcc_Filtered = gx - ((1-alpha)*xAcc_Filtered + alpha*gx); 

% convert to acceleration from accelerometer  
acceleration = (floor(xAcc_Filtered*100)*multiplier/100 - init_accx); 

 

 

accFilt = (1-beta)*accFilt + beta*acceleration; 
% ignore small value acceleration due to noise 
if(accFilt>-acc_threshold&&accFilt<acc_threshold) 

    accFilt = 0; 
end 

 

 



   Page 6 of 8 
© UCL (University College London). All  Rights Reserved 

is a MATLAB function to perform integration. The first parameter is the equation we want to 

integrate, ‘x’ is the acceleration we have just calculated. The second and last parameter is the initial 

and final value for the integration which is the change in time.  

 

 

 

 

 

 

 

Add the following line to print the total displacement in the command window.  

 

Lastly, set the delay in the loop. 

 

That is all we need in the main while loop. We close the while loop with an “end”.  

 

This completes our program. You may connect the Engduino to the computer and test run this 

program that you have just created. 

Click run on MATLAB to run the program, hold the Engduino to the start position of where you want 

to measure, and press the push button to start measure. Move the Engduino in one direction until 

you reached the place you want to stop measuring and press the push button at the same time. This 

should give you an estimated total distance moved.  

However, if you do not press the push button when you stop, you will notice that the distance keep 

increasing. The calculations above assume that we are only getting the acceleration in the direction 

we are moving. But in reality, the accelerometer will take into account of acceleration due to falling, 

shaking or rolling. These forces leads to additional acceleration and decelerations and the sensor 
cannot distinguish these forces. 

Using accelerometer alone is not a good way to measure distance. We will need other sensors such 
as a gyroscope in order to adjust these forces to get a more accurate result.  

Since accelerometer alone cannot provide accurate data for acceleration, can you think of better 

ways to measure distance or even height with accelerometer?  

Hint: Forget about physics, apply the rules you have learnt in Maths! 

5. Visualise the data (Additional) 

You can visualise the data and calculation by plotting the graph in MATLAB. The next step will create 

two graphs, first graph plots the accelerometer data and the second graph plots the velocity. Use 

x=sym(acceleration_Filtered); 

     
% Calculate velocity 
current_velocity = previous_velocity + int(x, previous_time, 

current_time); 
% low pass filter to filter out noise from calculated velocity 
velocity_Filtered = (1-gamma)*velocity_Filtered + gamma*current_velocity; 
% Integrate velocity to displacement 
displacement = int(current_velocity, previous_time, current_time); 
total_displacement = total_displacement + displacement; 
previous_velocity = velocity_Filtered; 

previous_time = current_time; 

 

 

pause(1/frequency); 

 

end 

 

 

disp(total_displacement); 

 

 



   Page 7 of 8 
© UCL (University College London). All  Rights Reserved 

back the existing code. Copy the code below and put it above the first while loop. This will create the 
graphs.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copy the following code into the bottom of main while loop, just above the pause statement.  

 

 

 

 

 

 

 

 

%% For Graph plotting 
buffSize = 10; 
accelerometer_circBuff = nan; 
velocity_circBuff = nan; 
time = now; 
i=1; 

  
figure; 
% graph1 
graph(1) = subplot(1,2,1); 
plotHandle1 = 

plot(graph(1),time,accelerometer_circBuff,'Marker','o','MarkerSize',5,'Li

neWidth',2); 
xlabel('Time[s]'); 

ylabel('Gravitational Force (g)'); 
title(['Acceleration: ' char(vpa(acceleration_Filtered,3)) 'm/s^2']); 
limits = 1.0; 
ylim([-limits limits]) 
axis square; 
grid on 

  
% graph2 
graph(2) = subplot(1,2,2); 

plotHandle2 = 

plot(graph(2),time,velocity_circBuff,'Marker','o','MarkerSize',5,'LineWid

th',2); 
xlabel('Time[s]'); 
ylabel('Velocity (m/s)'); 
limits = 1.0; 
ylim([-limits limits]); 
title(['Displacement: ' char(vpa(total_displacement,3)) 'm']); 
axis square; 
grid on 

 

 



   Page 8 of 8 
© UCL (University College London). All  Rights Reserved 

 

 

 

 

 

 

 

 

 

if i < buffSize 
    % Add the newest sample into the buffer. 
    accelerometer_circBuff(i) = gx; 

    velocity_circBuff(i) = velocity_Filtered; 
    time(i) = (now-t0)*10e4; 
else 
    % If we have enough samples then remove oldest sample and add the 
    % newest one into the buffer. 
    accelerometer_circBuff = [accelerometer_circBuff(2:end), gx]; 
    velocity_circBuff= [velocity_circBuff(2:end), velocity_Filtered]; 
    time = [time(2:end), (now - t0)*10e4]; 
end 
% subplot raw X acceleration vector 

subplot(graph(1)); 
limits = 1.0; 
xlim([min(time) max(time)+10e-9]); 
ylim([-limits limits]); 
title(['Acceleration: ' char(vpa(acceleration_Filtered,3)) 'm/s^2']); 
set(plotHandle1,'YData',accelerometer_circBuff,'XData',time); 
 

% subplot the velocity 
subplot(graph(2)); 
limits = 1.0; 

xlim([min(time) max(time)+10e-9]); 
ylim([-limits limits]); 
title(['Displacement: ' char(vpa(floor(total_displacement*10)/10,2)) 

'm']); 
set(plotHandle2,'YData',velocity_circBuff,'XData',time);  
i = i+1; 

 

 


