1 Basic Programming

In this example, we intend to demonstrate the difference in using for-loop and while-loop in programming.

If you haven’t done so already, create a new Engduino object by typing in Command Window:

```matlab
>> e=engduino
```

1.1 For-loop

Create a new script “forloop” by right-click on the “current folder” area in MATLAB. Type in the following:

```matlab
for i=0:15
e.setLedsExact(i, e.COLOR_Blue);
pause(0.2);
end
```

Run the program by typing `>>forloop` in Command Window, or press F5 in the Editor.

Observe how the lights loop around exactly once. In Command Window, type

```matlab
>> help pause
```

This gives you the documentation and usage example on the command `pause`.

1.2 Nested for-loop

Use another for loop to make the light loop round 5 times. Enclose the code in 1.1 with

```matlab
for outer=1:5
  ...
end
```

1.3 Variables

We want to make the loop go faster and faster, use a variable `t` to store the delay time, so that we can change it in the program.

```matlab
t = 0.2;
for outer = 1:5
  for i=0:15
    e.setLedsExact(i, COLOR_BLUE);
pause(t);
  end
  t = t-0.05;
end
```
1.4 Vector/array

Use a vector/array c to store the colour in each loop, use it in round to show the colour.

```
t = 0.2;
c = [e.COLOR_BLUE, e.COLOR_RED, e.COLOR_MAGENTA, e.COLOR_YELLOW, e.COLOR_GREEN];
for outter = 1:5
    for i=0:15
        e.setLedsExact(i, c(outter));
        pause(t);
    end
    t = t-0.05;
end
```

1.5 While-loop

What if we want this to loop constantly, until we want to break it with Ctrl-C?

Create a new script “whileloop” by right-click on the “current folder” area in MATLAB Type in the following:

```
i=0;
t=0.2;
while(1)
    e.setLedsExact(i, c(outter));
    pause(t);
    i = i+1;
    if i==15
        i=0;
    end
end
```

Use Ctrl-C in MATLAB (not the Editor) to break the infinite while loop.

Note: While loop stop only stop when the pre-defined condition is met. In the case of while(1), it never stops!

- Make it go faster and faster by introducing a variable. The speed is limited by the serial communication between MATLAB and Engduino.
- Use the light sensor to break the while-loop by replacing while(1) with while(e.getLight). Add fprintf('while-loop broken\n') at the end of the program. You can break the while loop by covering the sensor!

1.6 Using Matrix/ 2D array

The setLedsRgb function takes just one input argument to change all the 16 LEDs on Engduino. It takes a 16 by 3 matrix that stored the brightness value of RGB for each LED light.

Create a new script “LEDRGB” by right-click on the “current folder” area in MATLAB. Use zeros to create a 16 x 3 matrix filled with zeros

```
b_matrix = zeros(16,3);
for inner=1:16
    b_matrix(inner, outter) = 5; %brightness
    e.setLedsRgb(b_matrix);
    pause(0.5);
```
Note: Matrix index in MATLAB starts from 1 (not zero!)

Create an outer loop to loop through blue and green.

Let’s use random number to mix our colour!

```matlab
b_matrix = rand(16,3); %generate uniformly distributed random numbers
b_matrix = b_matrix*8; %normalise to interval 0, 8
b_matrix = floor(b_matrix); %round to nearest integer
e.setLedsRgb(b_matrix);
```

1.7 Explore
In MATLAB itself, explore other Light functions

- `e.setLedsAll(e.COLOR_BLUE)`
- `e.setLedsAllB(e.COLOR_BLUE, 2)`
- `e.setLedsOne(2, e.COLOR_BLUE)`
 - `e.setLedsOne(3, e.COLOR_RED)`

2 Data Collection
The strength of integrating MATLAB and Engduino is the data collection side

2.1 Getting and plotting temperature data
In Command Window, type in

```matlab
>>e.getTemperature
```
This will get you the current temperature in degree Celsius.

Create a new Script “tempExp”, the follow code will update and plot the data in real time with marker ‘x’

```matlab
figure(1)
for i=1:100
data(i) = e.getTemperature;
plot(data(1:i), 'x-')
refresh
pause(1)
end
```

- Try plotting data from the Light sensor
- Try plotting data from the accelerometer
3 Data in the Cloud

Working from two, we can aim to put the temperature data onto the Cloud, store and visualise the data there. We use thingspeak.com

☐ Sign up for a ThingSpeak account at https://thingspeak.com/
☐ Create a new Channel at https://thingspeak.com/channels

☐ Save you “tempExp” script as “tempExpCloud”, Add the following lines at the beginning

```matlab
% ChId of the channel
writeChId = 59272;
% WriteKey of the channel
writeKey = 'Y05RUS9XIVXK3JR';

Replace your writeChId with the Channel ID under “Channel Setting” tab at Thingspeak.com; writekey with Key under “API Keys” tab.

Under data(i) add the following line to get temperature data:

Light(i)=e.getLight;

Inside the for loop, add the code to upload to thingspeak.com

```matlab
c = clock;
t = datetime(c(1),c(2),c(3),c(4),c(5),c(6));
thingspeakWrite(writeChId, [data(i), light], ...
'Fields',[1,2],'TimeStamps',t,'Writekey',writeKey);
```

The whole code should look like this:

```matlab
% ChId of the channel
writeChId = 59272;
% WriteKey of the channel
writeKey = 'Y05RUS9XIVXK3JR';

figure(1)
```
for i=1:100
    data(i) = e.getTemperature;
    light(i) = e.getLight;
    plot([1:i], data(1:i), 'x-', [1:i], light(1:i), 'o-')
    legend('temperature', 'light')
    refresh
    pause(15)
end

% Upload to thingsSpeak
c = clock;
t = datetime(c(1), c(2), c(3), c(4), c(5), c(6));
thingSpeakWrite(writeChId, [data(i), light(i)],...
    'Fields', [1, 2], 'TimeStamps', t, 'writekey', writekey);
end