
 Page 1 of 6
© UCL (University College London). All Rights Reserved

engduino® Tutorial

ENGDUINO SUPPORT TEAM - SUPPORT@ENGDUINO.ORG

Create custom Game Controller with
Accelerometer

Overview:
Engduino has a 3-axis xyz-accelerometer built in. This would allow us to apply trigonometry to

calculate the angle between the axes and turn it into many interesting applications. One of them is a

game controller based on accelerometer which we are going to demonstrate to you here.

Aim:
This tutorial aims to guide you through on how to create and customise your own version of game
controller using the Accelerometer and Button on Engduino.

Objectives:
 Get Accelerometer reading to calculate the tilt angle

 Use external java library in MATLAB to map the input to a keyboard key

Learning Outcomes:
By the end of this tutorial, you should be able to

 Import external java library and use it in MATLAB

 Get data inputs from Accelerometer and Button

 Calculate the angle from xyz-axis of accelerometer

 Map inputs into keyboard keys or mouse on your computer.

Pre-requisite
 Java SE 7 and above installed

 Engduino MATLAB Support toolbox and MATLAB installed

 Engduino configured to make it discoverable in MATLAB

Getting Started
We assume that you already setup the connection for Engduino in MATLAB, if you haven’t, please
refer to the documentation provided in the support package.

This is a simple yet interesting application as you can physically map any keyboard keys or mouse

control to the tilt angle calculated from the accelerometer readings. You can go on with your

creativity to customise the keys to be mapped in your program and make a game controller of your
own.

 Page 2 of 6
© UCL (University College London). All Rights Reserved

For starters, we have included a simple Space Shooter game that only has 5 controls which are up,

down, left, right and fire. As such, we are going to guide you on how you can map these controls

using Engduino.

Import Libraries
We need the following java library to simulate any keypress in the computer. First, start a new script

and type in the following line.

Initialise Variables
We initialise the java object “Robot” to a variable.

The frequency set how fast the program run in hertz. The higher the frequency the faster the

program scans for the changes in sensors and the faster it responds to the tilt. However, setting the

frequency too high or too low would result in negative impact on the responsiveness of the program.

We set it at 100 as an optimum solution.

The LRsensitivity and UpDownSensitivity set how sensitive your program should response to a tilt

angle in degree. The lower the number, the higher its sensitivity. You may adjust these variables to
suits your playing style.

Connect to Engduino

The following lines check if the object ‘e’ is available in MATLAB workspace. If it does not exist, it
calls the function “engduino()” which will connect the Engduino hardware and store it as an object.

Initialise Game Controller’ holding Position

Many of us hold the game controller in a different tilt angle. For example, when you are playing a

game on your mobile phone, some people would like to hold the phone in a more upright positon

whereas some prefer to hold it more flat. As such, we need to offset this initial tilt angle to the angle
calculated from the accelerometer readings.

import java.awt.Robot;

% Declare the java object
robot = Robot;
% Set reading frequency [Hz] - readings per second.
frequency = 100 ;
% Set the left right steering sensitivity
LRsensitivity = 30;
% Set the up down steering sensitivity
UpDownSensitivity = 10;

if (~exist('e', 'var'))
 e = engduino();
end

% initialise starting accelerometer position
newReading = e.getAccelerometer();
gx = newReading(1);
gy = newReading(2);
gz = newReading(3);
% set the initial tilt position of the accelerometer
thetaUD_init = atand(gx/gz);

 Page 3 of 6
© UCL (University College London). All Rights Reserved

This code will take the initial reading from the accelerometer. The getAccelerometer() function will

return the accelerometer xyz-axis reading in a 1x3 matrix. We then calculate the initial up/down tilt

angle and store it in a variable which we will use it later for offset.

Main Program Loop
After all the initialisation, we will now create the main loop in our program to keep it running,

reading in accelerometer data, calculate the tilt angle and simulate the keypress. For simplicity, we

will create an infinite while loop as we want our game controller to keep working until we press
ctrl+c in MATLAB to terminate the program.

This code will keep the code in the body of the while loop running infinitely as its condition

statement is fixed. First, we need to keep getting inputs from the accelerometer.

Next, we will calculate the UP/DOWN, LEFT/RIGHT tilt angle. If we lay the Engduino flat with LED
facing down, then the z-axis will point downwards.

Then we apply our initial tilt angle offset to the UP/DOWN axis.

After that, we will work out the condition to map the tilt angle to a keyboard key on the computer

and simulate the keypress. We have assigned our java object to the variable “robot”, now we can

just use it to call its function to simulate the keypress. First, we map the LEFT/RIGHT axis to our
keyboard.

while (1)

% Read acceleration vector from Engduino's accelerometer sensor.
newReading = e.getAccelerometer();
gx = newReading(1);
gy = newReading(2);
gz = newReading(3);

% calculate the angle of the resultant acceleration Left Right

thetaLR = atand(gy/gx);

% calculate the angle of the resultant acceleration Up Down
thetaUD = atand(gx/gz);

% offset the up/down tilt axis
upDownAxis = thetaUD - thetaUD_init;

𝐴𝑛𝑔𝑙𝑒 = 𝑡𝑎𝑛−1
𝑌

𝑋

 Page 4 of 6
© UCL (University College London). All Rights Reserved

The last condition of the if-else statement is to simulate the key release when the tilt angle does not
fall into any of the condition above.

Similarly, we map the UP/DOWN axis to the keys on the keyboard

Next, we will map the button on the Engduino to the SPACE key.

Optionally, we can print out the calculated tilt angle from accelerometer on the screen for the
purpose of fine tuning the game controller.

We now set a delay in the loop to set the frequency of the running program.

That is all we need in the main while loop.

if(thetaLR<-LRsensitivity&&thetaUD<0)
 % Move left
 robot.keyPress(java.awt.event.KeyEvent.VK_LEFT);
elseif(thetaLR>LRsensitivity&&thetaUD<0)
 % Move right
 robot.keyPress(java.awt.event.KeyEvent.VK_RIGHT);
elseif(thetaLR<-LRsensitivity&&thetaUD>=0)
 % inverse the control when up/down tilt angle >=0
 % Move right
 robot.keyPress(java.awt.event.KeyEvent.VK_RIGHT);
elseif(thetaLR>LRsensitivity&&thetaUD>=0)
 % Move left

 robot.keyPress(java.awt.event.KeyEvent.VK_LEFT);
else

 % release the key

 robot.keyRelease(java.awt.event.KeyEvent.VK_LEFT);
 robot.keyRelease(java.awt.event.KeyEvent.VK_RIGHT);
end

if(upDownAxis<-UpDownSensitivity)
 % Move down
 robot.keyPress(java.awt.event.KeyEvent.VK_DOWN);
elseif (upDownAxis>UpDownSensitivity)
 % Move up
 robot.keyPress(java.awt.event.KeyEvent.VK_UP);
else
 robot.keyRelease(java.awt.event.KeyEvent.VK_UP);
 robot.keyRelease(java.awt.event.KeyEvent.VK_DOWN);
end

% Map the button on Engduino to a Key
if (e.getButton())

% key to fire
 robot.keyPress(java.awt.event.KeyEvent.VK_SPACE);
elseif (not(e.getButton()))
 robot.keyRelease(java.awt.event.KeyEvent.VK_SPACE);
end

% display the tilt angle calculated
title(['LeftRight tilt angle: ' num2str(thetaLR, '%.0f'), ...
 ' UpDown tilt angle: ' num2str(thetaUD, '%.0f')]);

pause(1/frequency);

end

 Page 5 of 6
© UCL (University College London). All Rights Reserved

Warning! We have not set the parameter in our program on when do we want our game controller

to start or stop working. So, the moment you start running the program, it is going to map the tilt

angle to a keyboard key. Do not be afraid if you experience some weird behaviour from your
computer, it is simply just receiving a keypress caused by our program.

As an extension of this tutorial, you may modify the program to implement a start/stop condition for
the while loop.

You may now test out the program that you have just created. Launch the included game

“SpaceShooterKeyboard.exe” which is designed for the purpose to demonstrate this tutorial.
Connect your Engduino and run the code.

Hold the Engduino with the LEDs facing down as shown in the image below.

When you launch the game, tick the windowed mode under the configuration so that the game will

not go into full screen.

Start playing the space shooter game. You will not lose your life in this game. This will allow you to

have infinite amount of time to test out your controller.

Extension of the project.
You have just completed the tutorial and made Engduino a game controller. There are few things

you can do to further improve the program.

 Page 6 of 6
© UCL (University College London). All Rights Reserved

- Modify the program to start/stop the game controller on a condition

- Customise the game controller to make use of other sensors on the Engduino as inputs

- If you have a Bluetooth module on the Engduino, you can turn it into a Bluetooth game
controller by just changing one line of code.

