ENGDUINO LIBRARIES: THE INFRARED

The infrared transceiver allows two (or more) Engduinos to talk to each other over a distance of upto
about 50-100cm. This is the most complex of the libraries in terms of basic functionality, but it is
easy enough to use once you are a competent programmer.

HEADER

#include <EngduinolR_h>
SETUP()
EngduinolR.begin();
BASIC FUNCTIONS

To make use of the IR, you must understand the concept of arrays. Take some time to revise this if
you need to before trying the exercises in here. Because the IR is about communication, you will
need two Engduinos to do anything useful.

In terms of basic functions, you can send a single character (byte) at a time. So, for example, to send
the character ‘c’ we do the following.

EngduinolR.send("c");

And, to receive, you should execute the following code on the destination:

uint8_t buf[IRBUFSZ]; // Declare a buffer in which to receive
// any message. It should be this size.

int len = EngduinolR.recv(buf); // Block until there is something to
// receive and then receive it.
// len contains the length of the
// received message

Write code for a sender, which sends a character every second. On a different Engduino, write the
code for a receiver, which repeatedly executes a receive and prints the result.

MORE ADVANCED FUNCTIONS

Rather than sending a single byte at a time, you can send upto 12 bytes:

char buf[12]; // Declare a buffer of characters.
// [Could be declared as uint8_t]

... put some values into buf
EngduinolR.send(buf, 12); // Send the buffer - you need to provide

// the length of the buffer as well as
// the contents

If you don't want to wait forever for an incoming message to arrive, you can set a timeout. When the
function call returns, either (a) a message has been received or (b) the call has timed out. In the first
case, the length of the message is returned, in the second, a negative number is returned:

uint8_t buf[IRBUFSZ]; // Declare a buffer in which to receive
// any message. It should be this size.

int len = EngduinolR.recv(buf, 500); // Block until either we have a
// message to receive, or 500
// microseconds has elapsed
// len contains either the length of the
// received message or a negative number
it (len >= 0)
.... a message was received
else
-... the call timed out - there is no message

If you set the timeout to zero, the recv function will block forever - as it did when we omitted the
timeout value.

IDEAS FOR PROJECTS WITH THE IR

e Make an Engduino send the word “Hello” when a button is pressed, and print out any
message it receives. Try this between two Engduinos and vary the distance between them.
You will probably notice that at some point, the message isn’t received correctly.

o To deal with this, we need to know when a message has been received correctly. There are
several ways of doing this: for example, you could use a parity bit or a cyclic redundancy
check (CRC) algorithm. Search online for these terms and see whether you can implement
them for the Engduino

e Write a simple communications protocol. Each Engduino should periodically send a message
that tells other Engduinos that it is there. It should also listen for other Engduinos sending
this message. When two Engduinos meet, one of them should flash the LEDs red, the other
should flash them blue. It doesn’t matter which does what, so long as one is red and the
other blue. You shouldn’t use the button at all — this should happen automatically when they
are in range of each other.

e Note for Engduino v2+: because of the way in which the IR is wired in v2+, which was
changed from v1 to allow additional interfacing capabilities, the IR communications will not
be able to decode the signal sent by a TV remote. It may still be able to distinguish between
some buttons, but that is beyond the scope of this document.

